Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
1.
Respirology ; 29(4): 312-323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345107

RESUMO

BACKGROUND AND OBJECTIVE: Variants in surfactant genes SFTPC or ABCA3 are responsible for interstitial lung disease (ILD) in children and adults, with few studies in adults. METHODS: We conducted a multicentre retrospective study of all consecutive adult patients diagnosed with ILD associated with variants in SFTPC or ABCA3 in the French rare pulmonary diseases network, OrphaLung. Variants and chest computed tomography (CT) features were centrally reviewed. RESULTS: We included 36 patients (median age: 34 years, 20 males), 22 in the SFTPC group and 14 in the ABCA3 group. Clinical characteristics were similar between groups. Baseline median FVC was 59% ([52-72]) and DLco was 44% ([35-50]). An unclassifiable pattern of fibrosing ILD was the most frequent on chest CT, found in 85% of patients, however with a distinct phenotype with ground-glass opacities and/or cysts. Nonspecific interstitial pneumonia and usual interstitial pneumonia were the most common histological patterns in the ABCA3 group and in the SFTPC group, respectively. Annually, FVC and DLCO declined by 1.87% and 2.43% in the SFTPC group, respectively, and by 0.72% and 0.95% in the ABCA3 group, respectively (FVC, p = 0.014 and DLCO , p = 0.004 for comparison between groups). Median time to death or lung transplantation was 10 years in the SFTPC group and was not reached at the end of follow-up in the ABCA3 group. CONCLUSION: SFTPC and ABCA3-associated ILD present with a distinct phenotype and prognosis. A radiologic pattern of fibrosing ILD with ground-glass opacities and/or cysts is frequently found in these rare conditions.


Assuntos
Cistos , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Masculino , Adulto , Criança , Humanos , Estudos Retrospectivos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/genética , Pulmão/diagnóstico por imagem , Proteína C Associada a Surfactante Pulmonar , Transportadores de Cassetes de Ligação de ATP/genética
3.
Protein Sci ; 33(1): e4835, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984447

RESUMO

Pulmonary surfactant (PS) is a lipid-protein complex that forms films reducing surface tension at the alveolar air-liquid interface. Surfactant protein C (SP-C) plays a key role in rearranging the lipids at the PS surface layers during breathing. The N-terminal segment of SP-C, a lipopeptide of 35 amino acids, contains two palmitoylated cysteines, which affect the stability and structure of the molecule. The C-terminal region comprises a transmembrane α-helix that contains a ALLMG motif, supposedly analogous to a well-studied dimerization motif in glycophorin A. Previous studies have demonstrated the potential interaction between SP-C molecules using approaches such as Bimolecular Complementation assays or computational simulations. In this work, the oligomerization state of SP-C in membrane systems has been studied using fluorescence spectroscopy techniques. We have performed self-quenching and FRET assays to analyze dimerization of native palmitoylated SP-C and a non-palmitoylated recombinant version of SP-C (rSP-C) using fluorescently labeled versions of either protein reconstituted in different lipid systems mimicking pulmonary surfactant environments. Our results reveal that doubly palmitoylated native SP-C remains primarily monomeric. In contrast, non-palmitoylated recombinant SP-C exhibits dimerization, potentiated at high concentrations, especially in membranes with lipid phase separation. Therefore, palmitoylation could play a crucial role in stabilizing the monomeric α-helical conformation of SP-C. Depalmitoylation, high protein densities as a consequence of membrane compartmentalization, and other factors may all lead to the formation of protein dimers and higher-order oligomers, which could have functional implications under certain pathological conditions and contribute to membrane transformations associated with surfactant metabolism and alveolar homeostasis.


Assuntos
Proteína C Associada a Surfactante Pulmonar , Surfactantes Pulmonares , Proteína C Associada a Surfactante Pulmonar/química , Proteína C Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Transferência Ressonante de Energia de Fluorescência , Lipídeos/química , Tensoativos
4.
Aging (Albany NY) ; 15(21): 12451-12475, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37955668

RESUMO

The abnormality of surfactant protein C (SFTPC) has been linked to the development of a number of interstitial lung diseases, according to mounting evidence. Nonetheless, the function and mechanism of SFTPC in the biological progression of lung adenocarcinoma (LUAD) remain unclear. Analysis of public datasets and testing of clinical samples suggested that SFTPC expression was abnormally low in LUAD, which was associated with the onset and poor prognosis of LUAD. The SFTPC-related risk score was derived using least absolute shrinkage and selection operator Cox regression as well as multivariate Cox regression. The risk score was highly correlated with tumor purity and tumor mutation burden, and it could serve as an independent prognostic indicator for LUAD. Low-risk LUAD patients may benefit more from CTLA-4 or/and PD-1 inhibitors. Overall, the risk score is useful for LUAD patient prognostication and treatment guidance. Moreover, in vitro and in vivo experiments demonstrated that SFTPC inhibits the proliferation of LUAD by inhibiting PI3K/AKT/mTOR signaling transduction. These results reveal the molecular mechanism by which SFTPC inhibits the proliferation of LUAD and suggest that SFTPC could be a new therapeutic target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/patologia , Proliferação de Células/genética , Adenocarcinoma de Pulmão/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo
5.
Pediatrics ; 151(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37232099

RESUMO

Childhood interstitial lung disease (chILD) is a collective term for a group of rare lung disorders of heterogeneous origin. Surfactant dysfunction disorders are a cause of chILD with onset during the neonatal period and infancy. Clinical signs of tachypnea and hypoxemia are nonspecific and usually caused by common conditions like lower respiratory tract infections. We report on a full-term male newborn who was readmitted to the hospital at 7 days of age with marked tachypnea and poor feeding during the respiratory syncytial virus season. After exclusion of infection and other, more common congenital disorders, chILD was diagnosed using chest computed tomography and genetic analysis. A likely pathogenic heterozygous variant of SFTPC (c.163C>T, L55F) was detected by whole exome sequencing. The patient received supplemental oxygen and noninvasive respiratory support and was treated with intravenous methylprednisolone pulses and hydroxychloroquine. Despite the treatment, his respiratory situation deteriorated continuously, leading to several hospitalizations and continuous escalation of noninvasive ventilatory support. At 6 months of age, the patient was listed for lung transplant and transplanted successfully aged 7 months.


Assuntos
Doenças Pulmonares Intersticiais , Proteína C , Humanos , Lactente , Recém-Nascido , Masculino , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/terapia , Mutação , Proteína C/genética , Proteína C/uso terapêutico , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/uso terapêutico , Tensoativos , Taquipneia
6.
Langmuir ; 39(12): 4338-4350, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917773

RESUMO

The lining of the alveoli is covered by pulmonary surfactant, a complex mixture of surface-active lipids and proteins that enables efficient gas exchange between inhaled air and the circulation. Despite decades of advancements in the study of the pulmonary surfactant, the molecular scale behavior of the surfactant and the inherent role of the number of different lipids and proteins in surfactant behavior are not fully understood. The most important proteins in this complex system are the surfactant proteins SP-B and SP-C. Given this, in this work we performed nonequilibrium all-atom molecular dynamics simulations to study the interplay of SP-B and SP-C with multicomponent lipid monolayers mimicking the pulmonary surfactant in composition. The simulations were complemented by z-scan fluorescence correlation spectroscopy and atomic force microscopy measurements. Our state-of-the-art simulation model reproduces experimental pressure-area isotherms and lateral diffusion coefficients. In agreement with previous research, the inclusion of either SP-B and SP-C increases surface pressure, and our simulations provide a molecular scale explanation for this effect: The proteins display preferential lipid interactions with phosphatidylglycerol, they reside predominantly in the lipid acyl chain region, and they partition into the liquid expanded phase or even induce it in an otherwise packed monolayer. The latter effect is also visible in our atomic force microscopy images. The research done contributes to a better understanding of the roles of specific lipids and proteins in surfactant function, thus helping to develop better synthetic products for surfactant replacement therapy used in the treatment of many fatal lung-related injuries and diseases.


Assuntos
Surfactantes Pulmonares , Fenômenos Biofísicos , Fosfolipídeos/química , Proteínas , Proteína B Associada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Propriedades de Superfície , Tensoativos , Proteína C Associada a Surfactante Pulmonar/química
7.
Intern Med ; 62(17): 2521-2525, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642519

RESUMO

Mutations in the surfactant protein C gene (SFTPC) are responsible for hereditary interstitial lung disease (ILD), which is a rare disease. We herein report a patient with a clinical history of endogenous lipoid pneumonia in infancy who developed diffuse progressive pulmonary fibrosis in adulthood associated with SFTPC mutations. A surgical lung biopsy and genetic sequencing revealed fibrotic interstitial pneumonia and two SFTPC mutations (c.215G>A and c.578C>A). Based on these findings, we diagnosed the series of lung diseases as sporadic ILD caused by SFTPC mutations. Physicians should suggest genetic sequencing in patients with early-onset ILD.


Assuntos
Doenças Pulmonares Intersticiais , Pneumonia Lipoide , Fibrose Pulmonar , Humanos , Lactente , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/genética , Mutação , Proteína C/genética , Proteína C Associada a Surfactante Pulmonar/genética , Tensoativos
8.
Am J Respir Cell Mol Biol ; 68(4): 358-365, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36473455

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial lung disease. A barrier to developing more effective therapies for IPF is the dearth of preclinical models that recapitulate the early pathobiology of this disease. Intratracheal bleomycin, the conventional preclinical murine model of IPF, fails to reproduce the intrinsic dysfunction to the alveolar epithelial type 2 cell (AEC2) that is believed to be a proximal event in the pathogenesis of IPF. Murine fibrosis models based on SFTPC (Surfactant Protein C gene) mutations identified in patients with interstitial lung disease cause activation of the AEC2 unfolded protein response and endoplasmic reticulum stress-an AEC2 dysfunction phenotype observed in IPF. Although these models achieve spontaneous fibrosis, they do so with precedent lung injury and thus are challenged to phenocopy the general clinical course of patients with IPF-gradual progressive fibrosis and loss of lung function. Here, we report a refinement of a murine Sftpc mutation model to recapitulate the clinical course, physiological impairment, parenchymal cellular composition, and biomarkers associated with IPF. This platform provides the field with an innovative model to understand IPF pathogenesis and index preclinical therapeutic candidates.


Assuntos
Fibrose Pulmonar Idiopática , Proteína C Associada a Surfactante Pulmonar , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Progressão da Doença , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Mutação/genética , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo
9.
Pediatr Pulmonol ; 58(2): 540-549, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36324278

RESUMO

BACKGROUND: Patients with inherited pulmonary surfactant metabolism disorders have a wide range of clinical outcomes and imaging findings. Response to current anti-inflammatory therapies has been variable and efficacy is unclear. OBJECTIVE: To describe and compare genetic, clinical, histological, and computed tomography (CT) outcomes in a cohort of patients with variants in the genes encoding surfactant protein C (SP-C) or adenosine triphosphate-binding cassette transporter A3 (ABCA3) in Argentina. METHODS: Observational cohort retrospective study. Patients carrying variants in genes encoding SP-C and ABCA3 proteins were included. RESULTS: Fourteen patients met the inclusion criteria: SFTPC n = 6, ABCA3 n = 8 (seven were heterozygous and one compound heterozygous). Neonatal respiratory distress was more frequent and severe in neonates with variants in the ABCA3 gene. The onset of the disease occurred in infancy before the age of 20 months in all cases. Patients with ABCA3 pathogenic variants had a severe clinical course, while long-term outcomes were more favorable in individuals with SFTPC variants. Initial CT findings were ground glass opacities and intraparenchymal cysts in both groups. Over time, signs of lung fibrosis were present in 57% of patients with ABCA3 variants and in 33% of the SFTPC group. The efficacy of anti-inflammatory interventions appears to be poor, especially for patients with ABCA3 pathogenic variants. CONCLUSIONS: Clinical, histological, and radiological features are similar in patients with SFTPC and ABCA3 variants; however, the latter have more severe clinical course. Current anti-inflammatory regimens do not appear to stop the progression of the disease.


Assuntos
Surfactantes Pulmonares , Recém-Nascido , Humanos , Lactente , Tensoativos , Estudos Retrospectivos , Argentina , Proteína C Associada a Surfactante Pulmonar/genética , Mutação , Progressão da Doença , Transportadores de Cassetes de Ligação de ATP/genética
10.
Proc Natl Acad Sci U S A ; 119(43): e2123187119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252035

RESUMO

Disruption of alveolar type 2 cell (AEC2) protein quality control has been implicated in chronic lung diseases, including pulmonary fibrosis (PF). We previously reported the in vivo modeling of a clinical surfactant protein C (SP-C) mutation that led to AEC2 endoplasmic reticulum (ER) stress and spontaneous lung fibrosis, providing proof of concept for disruption to proteostasis as a proximal driver of PF. Using two clinical SP-C mutation models, we have now discovered that AEC2s experiencing significant ER stress lose quintessential AEC2 features and develop a reprogrammed cell state that heretofore has been seen only as a response to lung injury. Using single-cell RNA sequencing in vivo and organoid-based modeling, we show that this state arises de novo from intrinsic AEC2 dysfunction. The cell-autonomous AEC2 reprogramming can be attenuated through inhibition of inositol-requiring enzyme 1 (IRE1α) signaling as the use of an IRE1α inhibitor reduced the development of the reprogrammed cell state and also diminished AEC2-driven recruitment of granulocytes, alveolitis, and lung injury. These findings identify AEC2 proteostasis, and specifically IRE1α signaling through its major product XBP-1, as a driver of a key AEC2 phenotypic change that has been identified in lung fibrosis.


Assuntos
Células Epiteliais Alveolares , Reprogramação Celular , Lesão Pulmonar , Proteínas de Membrana , Proteínas Serina-Treonina Quinases , Fibrose Pulmonar , Células Epiteliais Alveolares/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inositol/metabolismo , Lesão Pulmonar/patologia , Proteínas Serina-Treonina Quinases/genética , Proteostase , Fibrose Pulmonar/genética , Proteínas de Membrana/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo
11.
Prenat Diagn ; 42(11): 1429-1437, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36056747

RESUMO

OBJECTIVE: To establish a classification model for the evaluation of rat fetal lung maturity (FLM) using radiomics technology. METHOD: A total of 430 high-throughput features were extracted per fetal lung image from 134 fetal lung ultrasound images (four-cardiac-chamber views) of 67 Sprague-Dawley (SD) fetal rats with a gestational age of 16-21 days. The detection of fetal lung tissues included histopathological staining and the expression of surface proteins SP-A, SP-B, and SP-C. A machine learning classification model was established using a support vector machine based on histopathological results to analyze the relationship between fetal lung texture characteristics and FLM. RESULTS: The rat fetal lungs were divided into two groups: terminal sac period (SD1) and canalicular period (SD2). The mRNA transcription and protein expression level of SP-C protein were significantly higher in the SD1 group than in the SD2 group (p < 0.05). The diagnostic performance of the rat FLM classification model was measured as follows: area under the receiver operating characteristic curve (AUC), 0.93 (training set) and 0.89 (validation set); sensitivity, 89.26% (training set) and 87.10% (validation set); specificity, 85.87% (training set) and 79.17% (validation set); and accuracy, 87.79% (training set) and 83.64% (validation set). CONCLUSION: Ultrasound-based radiomics technology can be used to evaluate the FLM of rats, which lays a foundation for further research on this technology in human fetal lungs.


Assuntos
Pulmão , Proteína C Associada a Surfactante Pulmonar , Animais , Humanos , Recém-Nascido , Ratos , Pulmão/diagnóstico por imagem , Ratos Sprague-Dawley , Estudos Retrospectivos , RNA Mensageiro , Sensibilidade e Especificidade , Sindactilia , Ondas Ultrassônicas
12.
PLoS One ; 17(4): e0267155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476695

RESUMO

Surfactant protein C (SP-C) has several functions in pulmonary surfactant. These include the transfer of lipids between different membrane structures, a role in surfactant recycling and homeostasis, and involvement in modulation of the innate defense system. Despite these important functions, the structures of functional SP-C complexes have remained unclear. SP-C is known to exist as a primarily α-helical structure with an apparently unstructured N-terminal region, yet there is recent evidence that the functions of SP-C could be associated with the formation of SP-C dimers and higher oligomers. In this work, we used molecular dynamics simulations, two-dimensional umbrella sampling, and well-tempered metadynamics to study the details of SP-C dimerization. The results suggest that SP-C dimerizes in pulmonary surfactant membranes, forming dimers of different topologies. The simulations identified a dimerization motif region V21xxxVxxxGxxxM33 that is much larger than the putative A30xxxG34 motif that is commonly assumed to control the dimerization of some α-helical transmembrane domains. The results provide a stronger basis for elucidating how SP-C functions in concert with other surfactant proteins.


Assuntos
Proteína C Associada a Surfactante Pulmonar , Surfactantes Pulmonares , Dimerização , Proteína C Associada a Surfactante Pulmonar/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Tensoativos
14.
Nat Commun ; 13(1): 1821, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383173

RESUMO

BiP co-chaperones ERdj4, ERdj5, and GRP170 associate in cells with peptides predicted to be aggregation prone. Here, extending these findings to a full-length protein, we examine two Interstitial Lung Disease-associated mutants (ILD) of surfactant protein C (SP-C). The TANGO algorithm, which identifies sequences prone to formation of ß strand aggregates, found three such regions in SP-C: the N-terminal transmembrane (TM) domain and two sites in the intermolecular chaperone BRICHOS domain. We show the ILD mutants disrupt di-sulfide bond formation in the BRICHOS domain and expose the aggregation-prone peptides leading to binding of ERdj4, ERdj5, and GRP170. The destabilized mutant BRICHOS domain fails to properly insert its TM region in the ER membrane, exposing part of the N-terminal TM domain site. Our studies with ILD-associated mutant proteins provide insights into the specificity of ERdj4, ERdj5, and GRP170, identify context-dependent differences in their binding, and reveal molecular consequences of disease-associated mutants on folding.


Assuntos
Chaperonas Moleculares , Proteína C Associada a Surfactante Pulmonar , Sítios de Ligação , Chaperonas Moleculares/metabolismo , Mutação , Ligação Proteica , Dobramento de Proteína , Proteína C Associada a Surfactante Pulmonar/metabolismo
15.
Cells ; 11(6)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35326463

RESUMO

The transcriptomic profiling of lung damage associated with SARS-CoV-2 infection may lead to the development of effective therapies to prevent COVID-19-related deaths. We selected a series of 21 autoptic lung samples, 14 of which had positive nasopharyngeal swabs for SARS-CoV-2 and a clinical diagnosis of COVID-19-related death; their pulmonary viral load was quantified with a specific probe for SARS-CoV-2. The remaining seven cases had no documented respiratory disease and were used as controls. RNA from formalin-fixed paraffin-embedded (FFPE) tissue samples was extracted to perform gene expression profiling by means of targeted (Nanostring) and comprehensive RNA-Seq. Two differential expression designs were carried out leading to relevant results in terms of deregulation. SARS-CoV-2 positive specimens presented a significant overexpression in genes of the type I interferon signaling pathway (IFIT1, OAS1, ISG15 and RSAD2), complement activation (C2 and CFB), macrophage polarization (PKM, SIGLEC1, CD163 and MS4A4A) and Cathepsin C (CTSC). CD163, Siglec-1 and Cathepsin C overexpression was validated by immunohistochemistry. SFTPC, the encoding gene for pulmonary-associated surfactant protein C, emerged as a key identifier of COVID-19 patients with high viral load. This study successfully recognized SARS-CoV-2 specific immune signatures in lung samples and highlighted new potential therapeutic targets. A better understanding of the immunopathogenic mechanisms of SARS-CoV-2 induced lung damage is required to develop effective individualized pharmacological strategies.


Assuntos
COVID-19 , Autopsia , COVID-19/genética , Catepsina C , Humanos , Pulmão/patologia , Proteína C Associada a Surfactante Pulmonar , SARS-CoV-2
16.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121658

RESUMO

Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.


Assuntos
Variação Genética/genética , Precursores de Proteínas/genética , Proteína C Associada a Surfactante Pulmonar/genética , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas rab5 de Ligação ao GTP/genética , Células Epiteliais Alveolares/metabolismo , Animais , Caenorhabditis elegans/genética , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/genética , Surfactantes Pulmonares/metabolismo
17.
Zhonghua Jie He He Hu Xi Za Zhi ; 45(1): 53-58, 2022 Jan 12.
Artigo em Chinês | MEDLINE | ID: mdl-35000306

RESUMO

Objective: To improve the understanding of clinical manifestations, imaging findings, diagnosis and treatment of surfactant protein C gene (SFTPC) mutation associated with familial interstitial lung disease in adults. Methods: Two cases of adult SFTPC gene mutation associated with familial interstitial lung disease diagnosed in the Affiliated Hospital of Medical School of Ningbo University were analyzed retrospectively, and the literature was reviewed. The literatures were retrieved with "family interstitial lung disease" "SFTPC gene" "surface protein C gene" "SFTPC gene mutation associated with familial international lung disease" and "surface protein C gene mutation associated with familial international lung disease" in PubMed, Embase, Ovid, Wanfang database and China National Knowledge Infrastructure (CNKI). Results: There were two patients with familial interstitial lung diseases(one male and one female) with an average age of 27.5 years. Ⅱ-2 patient had symptoms of dry cough and shortness of breath, and Ⅱ-1 patient had no symptoms. There were multiple cysts and fine reticular shadows in both cases. Ⅱ-2 patient had multiple ground glass opacities in both lower lungs. TheⅡ-2 patient was diagnosed with usual interstitial pneumonia (UIP) by transbronchial lung cryobiopsy. A total of 35 patients were included in this literature review, including 20 males, with an average age of 33.5 years. Of all the patients, the clinical symptoms were described in 30 patients. The main manifestations were shortness of breath (22/30), dry cough (18/30), clubbing finger (12/30), and 30% (9/30) of them were found by chest computerized tomography (CT) without symptoms. There were 17 cases with detailed description of chest CT imaging. The most common chest CT findings were multiple intralobular reticular opacities (17/17), multiple cysts (12/17) and ground glass opacities (7/17). The main histopathological pattern was UIP (24/26). Conclusions: The main clinical manifestations of SFTPC gene mutation associated with familial interstitial lung disease in adults are shortness of breath, dry cough and clubbing fingers. The main manifestations are multiple cysts and intralobular reticular opacities in combination with multiple ground glass opacities. There is no specific drug in the treatment at present and early treatment with hydroxychloroquine may have better curative effect. When the imaging findings show multiple cysts and intralobular reticular opacities in combination with multiple ground glass opacities, especially the age of onset is less than 50 years old, this disease should be considered.


Assuntos
Doenças Pulmonares Intersticiais , Proteína C , Adulto , Feminino , Humanos , Pulmão , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/genética , Masculino , Pessoa de Meia-Idade , Mutação , Proteína C Associada a Surfactante Pulmonar , Estudos Retrospectivos , Tensoativos
18.
Lung ; 200(1): 67-71, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35034192

RESUMO

For newborns suspected having childhood interstitial lung disease (ChILD), the sequencing of genes encoding surfactant proteins is recommended. However, it is still difficult to interpret the clinical significance of those variants found. We report a full-term born female infant who presented with respiratory distress and failure to thrive at 2 months of age and both imaging and lung biopsy were consistent with ChILD. Her genetic test was initially reported as a variant of unknown significance in surfactant protein C (c.202G > T, p.V68F), which was modified later as likely pathogenic after reviewing a report of the same variant as causing ChILD. The infant was placed on noninvasive ventilation and treated with IV Methylprednisolone, Hydroxychloroquine, and Azithromycin but did not show significant clinical and radiological improvement underwent tracheostomy and is awaiting lung transplantation at 8 months of age. The challenges interpreting the genetic results are discussed.


Assuntos
Doenças Pulmonares Intersticiais , Transplante de Pulmão , Feminino , Humanos , Lactente , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/patologia , Mutação , Proteína C/genética , Proteína C Associada a Surfactante Pulmonar/genética , Tensoativos
19.
Andes Pediatr ; 93(5): 733-740, 2022 Oct.
Artigo em Espanhol | MEDLINE | ID: mdl-37906894

RESUMO

Pulmonary surfactant dysfunction disorders are caused by genetic defects that alter pulmonary surfactant metabolism. They are rare disorders and cause significant morbidity and mortality in the neonatal and pediatric populations. OBJECTIVE: To describe the clinical, histopathological, and ultrastructural findings of the lamellar body that suggest surfactant protein C (SP-C) dysfunction, where confirmatory genetic studies are not available. CLINICAL CASE: We report three pediatric cases of pul monary surfactant dysfunction disorders from a pediatric hospital in Peru. Video-assisted lung biop sy was performed in all cases. Ultrastructural studies of the lamellar body were compatible with type- C pulmonary surfactant dysfunction. The treatment used was methylprednisolone pulses monthly for six months, then every two months, varying the duration according to the clinical evolution. They also received daily hydroxychloroquine and azithromycin three times a week. Clinical evaluations, eye fundus, echocardiogram, electrocardiogram, and biochemistry were performed periodically. At follow-up, there was a good response to treatment and no adverse effects were observed. One case died despite the therapies received. CONCLUSIONS: In 3 patients with type-C surfactant dysfunction, treatment with corticosteroids, hydroxychloroquine, and azithromycin was successful in 2 of them. This is one of the first case series reported in Peru that contributes to the study of these diseases, es pecially in low- and medium-income countries.


Assuntos
Hidroxicloroquina , Proteína C , Criança , Humanos , Azitromicina , Hidroxicloroquina/uso terapêutico , Proteína C/genética , Proteína C Associada a Surfactante Pulmonar/genética , Tensoativos
20.
J Matern Fetal Neonatal Med ; 35(24): 4739-4742, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33345663

RESUMO

OBJECTIVE: To assess at 24 months corrected age (CA) the neurological, respiratory, and general health status of children born prematurely from 27+0 to 33+6 weeks' gestation who were treated in a first-in-human study with a new fully synthetic surfactant (CHF5633) enriched with SP-B and SP-C proteins. OUTCOME MEASURES: Children were assessed using Bayley Scales of Infant Development (BSID), with a score below normal defined as BSID-II Mental Development Index score <70, or BSID-III cognitive composite score <85. In addition, a health status questionnaire was used to check for functional disability including respiratory problems and related treatments, sensory and neurodevelopment assessments, communication skills as well as the number of hospitalizations. RESULTS: 35 of 39 survivors had a neurodevelopmental assessment, 24 infants being evaluated by Bayley's Scales and 11 by health status questionnaires only. 23 children had scores within normal limits and one had BSID-III <85. The remaining 11 were judged clinically to have normal development. Health status questionnaires detected only issues that would normally be expected in preterm-born children. CONCLUSIONS: This assessment offers reassurance that treatment with CHF5633 surfactant was not associated with adverse neurodevelopmental, respiratory, or health outcomes by two years corrected age.


Assuntos
Doenças do Prematuro , Síndrome do Desconforto Respiratório do Recém-Nascido , Desenvolvimento Infantil , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Doenças do Prematuro/tratamento farmacológico , Fragmentos de Peptídeos , Fosfatidilcolinas/uso terapêutico , Proteína B Associada a Surfactante Pulmonar , Proteína C Associada a Surfactante Pulmonar , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...